Numeric Response Questions Probability

- Q.1 An unbiased coin is tossed n times. If the probability that head occurs 6 times is equal to the probability that head cocurs 8 times, then find the value of n.
- Q.2 A problem in mathematics is given to three students A, B and C and their respective probability of solving the problem is 1/2,1/3 and 1/4 then find the probability that the problem is solved.
- Q.3 A and B are two events where P(A) = 0.25 and P(B) = 0.5. The probability of both happening together is 0.14. Then find the probability of both A and B not happening.
- Q.4 A coin is tossed n times, The probability of getting head at least once is greater than 0.8, then find the least value of n.
- Q.5 The probability that a man will live 10 more years, is 1/4 and the probability that his wife will live 10 more years, is 1/3. If the probability that none of them will be alive after 10 years, is $\frac{k}{10}$ then find k.
- Q.6 If the probability of the occurrence of a multiple of 3 on one die, a multiple of 2 on the other die if both are thrown together is $\frac{11}{k}$, then find k.
- Q.7 Seven white balls and three black balls are randomly placed in a row. If the probability that no two black balls are placed adjacently equals $\frac{k}{\lambda}$ then find $k + \lambda$.
- Q.8 In tossing 10 coins the probability of getting exactly 5 heads is $\frac{63}{k}$ then find k.
- Q.9 Three cards are drawn from a pack of 52 cards. If the probability that they are of the same colour is $\frac{k}{\lambda}$ then find λk .
- Q.10 Two coins are tossed together. Then find the probability of getting two heads.
- Q.11 The probability that a bulb produced by a factory will fuse after 150 days if used is 0.05. If the probability that out of 5 such bulbs none will fuse after 150 days of use is $\left(\frac{19}{k}\right)^5$ then find k.
- Q.12 In a throw of a dice the probability of getting one in even number of throws is $\frac{\lambda}{11}$ then find λ .

- Q.13 A card is drawn from a pack of 52 cards. A gambler bets that it is a spade or an ace. If the odds against his winning this bet is λ : 4 then find λ .
- Q.14 A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random from this pack without replacement. If the probability that at least one of them will be an ace, is $\frac{\lambda}{k}$ then find $\lambda + k$
- Q.15 Two persons A and B take turns in throwing a pair of dice. The first person to through 9 from both dice will be awarded the prize. If A throws first and the probability that B wins the game is $\frac{k}{17}$ then find k.

ANSWER KEY

1. 14.00

2.0.75

3. 0.39

4. 3.00

5. 5.00

6. 36.00

7. 22.00

8.256.00

9. 13.00

10. 0.25

11. 20.00

12. 5.00

13. 9.00

14. 29.00

15. 8.00

Hints & Solutions

1.
$$\frac{{}^{n}C_{6}}{2^{n}} = \frac{{}^{n}C_{8}}{2^{n}}$$
$$\Rightarrow n = 6 + 8$$
$$n = 14$$

2.
$$P(A \cup B \cup C) = 1 - P(\overline{A} \cap \overline{B} \cap \overline{C})$$
$$= 1 - \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}$$
$$= \frac{3}{4}$$

3.
$$P(\overline{AB}) = P(\overline{A \cup B}) = 1 - P(A \cup B)$$
$$= 1 - \{P(A) + P(B) - P(A \cap B)\}$$
$$= 1 - \{0.25 + 0.50 - 0.14\} = 0.39$$

4. P(At least 1 head) > 0.8

$$1 - P(\text{No Head}) > 0.8$$

 $1 - \left(\frac{1}{2}\right)^n > 0.8$

$$\frac{2}{10} > \left(\frac{1}{2}\right)^{n}$$

$$2^{n+1} > 10$$

$$\begin{array}{c} 2^{n+1} > 10 \\ n = 1, \, 2, \, 3, \, 4, \, \, \dots \\ & \quad \quad \textbf{x} \quad \textbf{x} \quad \checkmark \quad \checkmark \end{array}$$

$$\Rightarrow$$
 n_{min} = 3

P(A will live 10 more years) =
$$\frac{1}{4}$$

P(A will not alive after 10 years) =
$$\frac{3}{4}$$

P(B will live 10 more years) =
$$\frac{1}{3}$$

P(B will not alive after 10 years) =
$$\frac{2}{3}$$

$$\frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$$

6.
$$P\begin{bmatrix} \frac{1}{2k} & \frac{2}{3k} & \cup & \frac{1}{3k} & \frac{2}{2k} \end{bmatrix}$$
$$= \frac{(3 \times 2)}{36} + \left(\frac{2 \times 3}{36}\right) - \frac{1 \times 1}{36}$$

7.
$$P = \frac{|7 \times {}^{8}C_{3} \times |3|}{|10|} = \frac{7 \times 6}{10 \times 9} = \frac{7}{15}$$

8.
$$P = \frac{{}^{10}C_5}{2^{10}} = \frac{9 \times 4 \times 7}{1024} = \frac{63}{256}$$

9. Ex. events =
$${}^{52}C_3$$

Fav. events = ${}^{26}C_3 + {}^{26}C_3$
Total black colour = 26

Req. probability =
$$\frac{^{26}C_3 + ^{26}C_3}{^{52}C_3} = \frac{4}{17}$$

10. Sample space (S) = {HH, HT, TT, TH}
Ex. events =
$$2 \times 2 = 4$$

Req. probability =
$$\frac{\text{Fav. Events}}{\text{Ex. Events}} = \frac{1}{4}$$

11. P (Bulb fuse) =
$$\frac{1}{20}$$

$$P (\overline{Bulb \, fuse}) = \frac{19}{20}$$

$$n = 5$$

P (none is fuse) =
$$\left(\frac{19}{20}\right)^5$$

12.
$$P = \left(\frac{5}{6} \times \frac{1}{6}\right) + \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right) + \dots \times G.P.$$

$$P = \frac{\frac{5}{36}}{1 - \frac{25}{36}} = \frac{5}{11}$$

13. P(Win) = P(spade
$$\cup$$
 Ace) = $\frac{13+4-1}{52} = \frac{16}{52}$

:. Odd in against =
$$36:16=9:4$$

14. Required probability =
$$1 - \frac{{}^{12}C_2}{{}^{16}C_2} = \frac{9}{20}$$

15.
$$P(B_w) = \frac{8}{9} \times \frac{1}{9} + \left(\frac{8}{9}\right)^3 \frac{1}{9} + \left(\frac{8}{9}\right)^5 \frac{1}{9} + \dots$$

$$= \frac{\frac{8}{9} \times \frac{1}{9}}{1 - \left(\frac{8}{9}\right)^2} = \frac{8}{17}$$

